Study of proton helicity structure in polarized *p*+*p* collisions at RHIC

Kensuke Okada RIKEN BNL Research Center JPS September 22, 2007

Introduction

The first polarized p+p collider

Polarized *p* : spin structure of proton

p+p: gluon in leading order process

Collider: high sqrt(s), the perturbative QCD applicable.

This talk: experimental aspects of the proton helicity structure

Two large Detectors

PHENIX: High rate capability High granularity Good mass resolution and PID Limited acceptance

STAR: Large acceptance with azimuthal symmetry Good tracking and PID Central and forward calorimetry

They plan to cover their weak points in upgrade programs.

3

Luminosity and Polarization

Year/Run	√s [GeV]	L _{average} [10 ³⁰ s ⁻¹ cm ⁻	∫L (STAR)	∫L (PHENIX)	Polarization [%]
2002/Run2	200	1.5	-	-	15
2003/Run3	200	3	0.3	.35	35
2004/Run4	200	4	0.4	.12	46
2005/Run5	200	6	3.1	3.4	47
2006/Run6	200	20	8.5	7.5	60
2006/Run6	62.4	(no official number)	-	.08*	48*

The RHIC performance improves every year. (Luminosity and polarization)

Unpolarized Cross Section

- Unpolarized = spin averaged
- Before going to asymmetry measurements, we need to confirm the applicability of factorized pQCD.
 - pQCD calculation is used to extract ∆g (for example sensitive x region)
 - Is the PDF measured by DIS experiments valid for p+p collisions?

Remarks

The calibration of energy scale is important for the steep falling spectra. The normalization of total number of collisions is not trivial.

Measurements from PHENIX

 $pp \rightarrow \pi^0 X$: hep-ex-0704.3599

Sqrt(s)=200GeV Mid rapidity (|η|<0.35) pp→γ X : PRL 98, 012002

And also eta, h±, single electron (from charm)

All measurements support the pQCD calculation.

pQCD our theory baseline is OK!

Measurements from STAR

9/22/2007 K.Okada (RBRC) 7

Asymmetry measurement

120 bunches (revolution time = 1.2 [μ s])

$$A_{LL} = \frac{1}{P^2} \cdot \frac{N_{_{++}} - RN_{_{+-}}}{N_{_{++}} + RN_{_{+-}}} \qquad R \equiv \frac{L_{_{++}}}{L_{_{+-}}} \quad \text{Relative luminosity determined by BBC,ZDC counts}$$

Check relative luminosity measurement

Using the same hard scattering as the luminosity measurement

- \Rightarrow Need to check if there is no A₁₁ in BBC
- → Comparison between BBC and ZDC
- Check bunch related systematic uncertainty

Enough statistics in a bunch ⇒ check rate per bunch

If it's not enough ⇒ assign random spin pattern ⇒ confirm null asymmetry

0.4

0.2

10

Which channel to begin with?

STAR: Jet production high energy jet patch trigger Jet reconstruction

No fragmentation process 0.6

20

 $qq + q\overline{q} + ...$

STAR Preliminary Run5 (√s=200 GeV)

Run3: PRL 97,252001 (2006)

PHENIX : π^0 production EMCal trigger favored

gluon dominates in low-mid pT region_0.05

PHENIX Preliminary Run6 (√s=200 GeV)

Run3,4,5: PRL 93, 202002; PRD 73, 091102;

hep-ex-0704.3599

Comparison to the GRSV model

Calc. by W.Vogelsang and M.Stratmann

"max ($\Delta G=G$)" scenario is rejected.

It is a start point of feedback to theory calculations.

Other models with different assumption Universality to results from polarized DIS

Now we know,

In p+p (sqrt(s)=200GeV), the factorized pQCD works. ΔG is not large.

What is the next?

- With high integrated luminosity (10pb⁻¹ → 100pb⁻¹ or more)
 Higher statistics (π⁰, Jet)
 Various channels (e.g. direct γ, charm...)
- x_{gluon} dependence
 Full reconstruction of collision kinematics
 Different collision energy (√s) \(\sqrt{s} \) 62.4GeV, \(\sqrt{s} \) 500GeV
- Beyond the ∆G measurement
 Quark flavor decomposition
 Other ideas

Lower the collision energy?

Lower collision energy ($\sqrt{s}=62GeV$)

x 0.1 instantaneous luminosity, x100 production for the same x_{τ}

Run6 62.4GeV ~0.06 pb⁻¹ Run5 200GeV 1.8 pb⁻¹

The calculation almost scales to x_T . So low \sqrt{s} is effective.

9/22/2007 K.Okada (RBRC) 13

An issue in the low energy collision

Is pQCD applicable?
Is the theory scale uncertainty large?

An issue in the low energy collision

Is pQCD applicable?
Is the theory scale uncertainty large?

New! arXiv:0708.3060 (Aug.2007)

The progress in theory side may guarantee this measurement.

I think this is one of the options in the future.

\bullet Is direct γ the golden probe?

In the theory side..... yes

~80% from the gluon Compton process

No or small problem of the fragmentation function

• In the experimental side..... not really true

It is rare compared to hadronic production

Photon contamination from hadronic (π^0) decays.

Issues in direct γ asymmetry measurement

It is a rare process, but the good thing is they can be triggered by the EMCal.

Hadronic decay contamination

An isolation cut reduces the hadronic decay photons.

A bias caused by the cut? Remaining background effect?

Mapping the x_{gluon} dependence

- Kinematical reconstruction by tagging γ+jet, 2jets
- STAR has an advantage with its large acceptance.

Reconstructed $x\Delta G(x)$

GS-A,B,C models of $x\Delta G(x)$ from Gehrmann and Stirling, PR **D53**, 6100 (1996).

Beyond the ∆G measurement

Proton-spin quark flavor decomposition with parity violating process

- Spin transfer analysis with self-analyzing decay channel (Λ) Access to strange quark components?
- Jet kT asymmetry (a probe of quark orbital angular momentum?)

Prospects

From research plan BNL-73798 (Feb.2005)

Table 6: RHIC spin example schedule, 10 physics weeks per year, technically driven. Luminosities are 0.7 times maximum.

	Fiscal year	Spin Weeks	CME(GeV)	P	$L(pb^{-1})$	Remarks
	2002	5	200	0.15	0.5	First pol. pp collisions!
						Transverse spin
	2003	4	200	0.3	1.6	Spin rotators commissioned,
						first helicity measurements
	2004	3	200	0.4	3	New betatron tune developed,
	2004	3	200	0.4	3	-
						first jet absolute meas. P
	2005	10	200	0.5	14	$A_{LL}(\pi^0, \mathrm{jet}),$
						also 500 GeV studies
	2006	10	200	0.7	32	AGS Cold Snake commissioned,
						NEG vacuum coating complete
2008	2007	10	200	0.7	88	
	2027	10	200	0.7	00	
	2008	10	200	0.7	106	Director
	2008	10	200	0.7	106	Direct γ
		_				
	2009	5	200	0.7	35	target complete for 200 GeV;
		5	500	0.7	180	PHENIX μ trig.; W starts
	2010	10	500	0.7	266	STAR forward tracker;
						W physics
	2011	10	500	0.7	266	··· Pasyaras
	2011	10	500	0.7	200	
¥	2012	10	5 00		2//	G 1
	2012	10	500	0.7	266	Completes 500 GeV target

2008 Run is a important step!

- ullet RHIC provides an unique opportunity to study the proton spin structure. After 5 years of running, our measurements conclude ΔG isn't very large.
- The RHIC performance (both luminosity and polarization) is improving. In the next years, the accuracy of the current measurements improves. And measurement of other rare processes and a kinematical slices will be available.
- As the theory baseline application expands, it is interesting to scan other collision energies to access other kinematical regions.
- The quark flavor decomposition using the parity violating process is one of big upgrade projects in both PHENIX and STAR experiments.